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Exact quantum states of the time-dependent quadratic Hamiltonian system are in-
vestigated using SU(1,1) Lie algebra. We realized SU(1,1) Lie algebra by defining
appropriate SU(1,1) generators and derived exact wave functions using this algebra
for the system. Raising and lowering operators of SU(1,1) Lie algebra expressed by
multiplying a time-constant magnitude and a time-dependent phase factor. Two kinds
of the SU(1,1) coherent states, i.e., even and odd coherent states and Perelomov co-
herent states are studied. We applied our result to the Caldirola–Kanai oscillator. The
probability density of these coherent states for the Caldirola–Kanai oscillator converged
to the center as time goes by, due to the damping constant γ . All the coherent state
probability densities for the driven system are somewhat deformed.

KEY WORDS: SU(1,1) Lie algebra; time-dependent quadratic Hamiltonian system;
coherent states.
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1. INTRODUCTION

A large number of solvable systems including time-dependent quadratic
Hamiltonian systems (TDQHSs) which can be applied to various quantum systems
may be classified to the type of SU(1,1) (Inomata et al., 1992). The time-dependent
quadratic Hamiltonian systems have been attracted interest in the literature (Lewis
and Riesenfeld, 1969; Yeon et al., 1997; Choi and Gweon, 2002) from the inven-
tion of the invariant operator method by Lewis (1967). Yeon et al., investigated
TDQHSs, which are connected by canonical transformations using invariant op-
erator method (Yeon et al., 1997). The TDQHSs have plentiful applications in
various fields of physics such as quantum optics (Choi, 2003) mesoscopic elec-
tric circuit (Zhang et al., 2001), and acoustics (Choi, 2004a). Dodonov applied
TDQHSs to the derivation of the coherent states for a charged particle in a time-
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dependent uniform perpendicular electric and magnetic fields (Dodonov et al.,
1972) and to the loss energy states of nonstationary quantum harmonic oscillator
with a damping term (Dodonov and Man’ko, 1978). One of the typical types
of the TDQHS is Caldirola–Kanai Hamiltonian system with a driving force. We
applied Caldirola–Kanai Hamiltonian system to the description of the electromag-
netic waves propagating through homogeneous conducting linear media in view
of quantum mechanics (Choi, 2003) and the description of the quantum sound
wave in a cylindrical conduit (Choi, 2004a).

Many kinds of phenomena such as quantum correlation, phase coherence,
and squeezing effect in quantum systems may be explained in terms of the SU(1,1)
Lie algebra and the generalized coherent states associated with these Lie algebras
(Wódkiewicz and Eberly, 1985). The phase operators for the SU(1,1) Lie alge-
bras, which plays an important role in describing nonclassical properties of light,
have been investigated theoretically (Gerry, 1988). Beam splitters (Campos et al.,
1989) and quantum mechanical interferometers in quantum optics have been also
analyzed by the SU(1,1) Lie algebra. The one mode bosonic realization of SU(1,1)
Lie algebra can be used to describe the degenerate parametric amplifier.

The concept of coherent state, which was introduced by (Glauber, 1963)
has attained an important position in quantum optics since the coherent states
not only construct a very useful representation but also have physical substance.
There exist two kinds of the SU(1,1) coherent states, i.e., even and odd coherent
states (Dodonov et al., 1974) and Perelomov coherent states (Perelomov, 1972).
Perelomov coherent states is a special case of the two-photon coherent states of
(Yuen, 1976) and investigated in connection with squeezed states of a single-mode
field (Wódkiewicz and Eberly, 1985). The purpose of this paper is to investigate
SU(1,1) Lie algebra for the TDQHS and to explain various quantum-mechanical
properties of the system using this algebra. In the following section, we realize
the SU(1,1) Lie algebra by introducing generators. In Section 3, SU(1,1) coherent
states for the TDQHS are investigated. We applied our study to the Caldiroa–Kanai
Hamiltonian system, which is an example of the TDQHS in Section 4. In the last
section, we summarize previous sections with comparative explanation for the
TDQHS and their coherent states.

2. ONE MODE TIME-DEPENDENT QUADRATIC
HAMILTONIAN SYSTEM

In this section, we consider one mode TDQHS whose Hamiltonian is given
by

Ĥ (x̂, p̂, t) = 1

2
[A(t)p̂2 + B(t)(x̂p̂ + p̂x̂) + C(t)x̂2] + D(t)x̂ + E(t)p̂ + F (t),

(1)
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where x̂ and p̂ are canonical variables which satisfying [x̂, p̂] = ih̄ and A(t) −
F (t) are real time-dependent functions that are differentiable with respect to time.
In view of classical mechanics, we may use Hamiltonian dynamics

ẋ = ∂H (x, p, t)

∂p
, ṗ = −∂H (x, p, t)

∂x
, (2)

in order to derive the classical equation of motion for the system:

d2x(t)

dt2
− Ȧ

A

dx(t)

dt
+

(
AC + ȦB

A
− B2 − Ḃ

)
x(t) = − ȦE

A
+ BE − AD + Ė.

(3)

The terms in the right hand side of the above equation are related to the force
exerted to the system. If we know a solution of coordinate satisfying the above
equation, say it x0(t), we can also obtain corresponding momentum solution p0(t)
from

p0(t) = 1

A

[
dx0(t)

dt
− Bx0(t) − E

]
. (4)

Classical solutions x0(t) and p0(t) consists of two parts, complementary
functions xc(t) and pc(t) plus particular solutions xp(t) and pp(t) (Marion, 1970):

x0(t) = xc(t) + xp(t), (5)

p0(t) = pc(t) + pp(t). (6)

Many researchers have used SU(1,1) Lie algebra in order to facilitate the in-
vestigation of diverse phenomena in quantum systems. The Lie algebra of SU(1,1)
in one mode consists of operators K̂0, K̂1, and K̂2. We define these operators as

K̂0 = 1

4 h̄�

{
�2 1

s2(t)
[x̂ − xp(t)]2

+
[

1

A
(Bs(t) − ṡ(t)) [x̂ − xp(t)] + s(t)[p̂ − pp(t)]

]2 }
, (7)

K̂1 = 1

4 h̄�

{
�2 1

s2(t)
[x̂ − xp(t)]2

−
[

1

A
(Bs(t) − ṡ(t)) [x̂ − xp(t)] + s(t)[p̂ − pp(t)]

]2 }
, (8)

K̂2 = − 1

2 h̄

{
1

s(t)A
(Bs(t) − ṡ(t))[x̂ − xp(t)]2 + 1

2
{[x̂ − xp(t)][p̂ − pp(t)]

+ [p̂ − pp(t)][x̂ − xp(t)]}
}

, (9)
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where � is some real positive constant and s(t) is some time-dependent variable
that satisfies the following differential equation

s̈(t) − Ȧ

A
ṡ(t) +

(
AC + ȦB

A
− B2 − Ḃ

)
s(t) − A2�2 1

s3(t)
= 0. (10)

The mutual commutation relations between K̂0, K̂1, and K̂2 are

[K̂0, K̂1] = iK̂2, [K̂0, K̂2] = −iK̂1, [K̂1, K̂2] = −iK̂0. (11)

The third equation in (11) is the characteristic of SU(1,1) which is different from
SU(2). We can easily check that K̂0 is time-constant by differentiating it with
respect to time:

dK̂0

dt
= 0. (12)

For this one mode TDQHSs, we define raising and lowering operators as

K̂+ = K̂1 + iK̂2, K̂− = K̂1 − iK̂2. (13)

Note that a direct differentiation of the above two operators with respect to time
results

dK̂+
dt

= 2i�A(t)

s2(t)
K̂+, (14)

dK̂−
dt

= −2i�A(t)

s2(t)
K̂−, (15)

whose solutions are given by

K̂+(t) = K̂+(0) exp

(
2i

∫ t

0

�A(t ′)
s2(t ′)

dt ′
)

, (16)

K̂−(t) = K̂−(0) exp

(
−2i

∫ t

0

�A(t ′)
s2(t ′)

dt ′
)

. (17)

Thus, the magnitude of K̂+ and K̂− are evidently constant with time. Additional
commutation relations between SU(1,1) generators are

[K̂−, K̂+] = 2K̂0, [K̂0, K̂±] = ±K̂±. (18)

Since the Casimir operator can be calculated as

Ĉ = K̂2
0 − 1

2
(K̂+K̂− + K̂−K̂+) = − 3

16
, (19)

the eigenvalue of Ĉ is k(k − 1) = −3/16. Therefore, the Bargmann index is
k = 1/4 or k = 3/4. For k = 1/4, the basis for the unitary space is a set of even
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boson number while k = 3/4, the basis for the unitary space is a set of odd boson
number.

Let us denote the nth eigenvalues and eigenstates of K̂0 as λn and |n〉,
respectively:

K̂0|n〉 = λn|n〉. (20)

Then, the actions of the SU(1,1) generators on |n〉 is

K̂+|n〉 = 1

2

√
(n + 1)(n + 2)|n + 2〉, (21)

K̂−|n〉 = 1

2

√
n(n − 1)|n − 2〉, (22)

K̂0|n〉 = 1

2

(
n + 1

2

)
|n〉, (23)

K̂+K̂−|n〉 = 1

4
n(n − 1)|n〉. (24)

The generators K̂± can also be used to obtain the eigenstates in position space.
Let us start with the ground and the first excited states defined by

K̂−|0〉 = 0, K̂−|1〉 = 0. (25)

We see that the normalized solutions to the above equations in position space are

〈x|0〉 =
(

�

πs2 h̄

)1/4

eipp(t)x/h̄ exp

{
− 1

2s h̄

[
�

1

s
+ i

A
(Bs − ṡ)

]
[x − xp(t)]2

}
,

(26)

〈x|1〉 =
(

�

πs2 h̄

)1/4 1√
2
H1

(√
�

s2 h̄
[x − xp(t)]

)
eipp(t)x/h̄

× exp

{
− 1

2s h̄

[
�

1

s
+ i

A
(Bs − ṡ)

]
[x − xp(t)]2

}
, (27)

where Hn is nth order Hermite polynomial. The higher order eigenstates can be
derived by operating K̂+ appropriate times to Eqs. (26) and (27). So to speak,
the even order (n = 2l) and the odd order (n = 2l + 1) higher eigenstates can be
evaluated from

〈x|2l〉 = 22l

√
(2l)!

(K̂+)l〈x|0〉, (28)

〈x|2l + 1〉 = 22l

√
(2l + 1)!

(K̂+)l〈x|1〉. (29)
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When we combine the results of the above two equations, the whole eigenstates
can be written as

〈x|n〉 =
(

�

πs2 h̄

)1/4 1√
2nn!

Hn

(√
�

s2 h̄
[x − xp(t)]

)
eipp(t)x/h̄

× exp

{
− 1

2s h̄

[
�

1

s
+ i

A
(Bs − ṡ)

]
[x − xp(t)]2

}
. (30)

From Eq. (23), the eigenvalues of K̂0 are

λn = 1

2

(
n + 1

2

)
. (31)

The wave functions of the system, 〈x|ψn〉, are different from the eigenstates of
K̂0, 〈x|n〉, by only some time-dependent phase factors exp[iθn(t)] (Lewis and
Riesenfeld, 1969):

〈x|ψn〉 = 〈x|n〉 exp[iθn(t)]. (32)

By substituting Eq. (32) into Schrödinger equation, we can find the phases θn(t)
as

θn(t) = −
(

n + 1

2

) ∫ t

0

A(t ′)�
s2(t ′)

dt ′

−1

h̄

∫ t

0

[
1

2

[
A(t ′)p2

p(t ′) − C(t ′)x2
p(t ′)

] + E(t ′)pp(t ′) + F (t ′)
]

dt ′. (33)

The wave functions Eq. (32) agree with those of (Choi, 2004b) which are obtained
using another method.

3. SU(1,1) COHERENT STATES

The coherent states of usual harmonic oscillator can be generalized to that
of the TDQHS. The even and odd coherent states (Dodonov et al., 1974; Choi,
2004b) |α+〉 and |α−〉 are the eigenstates of K̂−:

K̂−|α±〉 = 1

2
α2|α±〉. (34)

It is well known that |α+〉 and |α−〉 can be expressed in terms of |n〉 as

|α+〉 = 1√
cosh |α|2

∞∑
n=0

α2n

√
(2n)!

|2n〉, (35)

|α−〉 = 1√
sinh |α|2

∞∑
n=0

α2n+1

√
(2n + 1)!

|2n + 1〉. (36)
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This implies that the even and odd coherent states are symmetry and anti-symmetry
combination of the Glauber coherent states, respectively. To obtain position rep-
resentation of these coherent states, we multiply both sides of the above two
equations by the position eigenbra 〈x| on the left and perform a little algebra using
Eqs. (28) and (29). Thus,

〈x|α+〉 =
(

�

s2 h̄π

)1/4 1√
cosh |α|2

cosh

(
α

√
2�

s2 h̄
[x − xp(t)]

)
eipp(t)x/h̄

× exp

{
− 1

2s h̄

[
�

s
+ i

A
(Bs − ṡ)

]
[x − xp(t)]2 − 1

2
α2

}
, (37)

〈x|α−〉 =
(

�

s2 h̄π

)1/4 1√
sinh |α|2

sinh

(
α

√
2�

s2 h̄
[x − xp(t)]

)
eipp(t)x/h̄

× exp

{
− 1

2s h̄

[
�

s
+ i

A
(Bs − ṡ)

]
[x − xp(t)]2 − 1

2
α2

}
. (38)

By considering the second part of Eq. (13) and Eq. (34), we can express α as

α =
√

1

2 h̄�

{[
�

s
+ i

1

A
(Bs − ṡ)

]
xc(t) + ispc(t)

}
. (39)

Using the above equation, Eqs. (37) and (38) can be rewritten as

〈x|α±〉 =
(

�

4s2 h̄π

)1/4

exp

(
−i

pc(t)xc(t)

2 h̄

)
eipp(t)x/h̄

×
{

exp

[
− 1

2s h̄

(
�

s
+ i

Bs − ṡ

A

)
(x − x0(t))2 + i

[x − xp(t)]pc(t)

h̄

]

± exp

[
− 1

2s h̄

(
�

s
+ i

Bs − ṡ

A

)
(x + x0(t) − 2xp(t))2

− i
[x − xp(t)]pc(t)

h̄

]}{
1 ± exp

{
− 1

h̄�

[
�2

s2
x2

c (t)

+
(

1

A
(Bs − ṡ)xc(t) + spc(t)

)2 ]}}−1/2

. (40)

The expectation values of canonical variables and their square in these coherent
states are

〈α+|x̂|α+〉 = 〈α−|x̂|α−〉 = xp(t), (41)
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〈α+|p̂|α+〉 = 〈α−|p̂|α−〉 = pp(t), (42)

〈α+|x̂2|α+〉 = s2 h̄

2�
(α2 + α∗2 + 2|α|2 tanh |α|2 + 1) + x2

p(t), (43)

〈α−|x̂2|α−〉 = s2 h̄

2�
(α2 + α∗2 + 2|α|2 coth |α|2 + 1) + x2

p(t), (44)

〈α+|p̂2|α+〉 = − h̄�

2s2

{[
1 − i

s(Bs − ṡ)

A�

]2

α2 +
[

1 + i
s(Bs − ṡ)

A�

]2

α∗2

−
[

1 +
(

s(Bs − ṡ)

A�

)2
]

(2|α|2 tanh |α|2 + 1)

}
+ p2

p(t), (45)

〈α−|p̂2|α−〉 = − h̄�

2s2

{[
1 − i

s(Bs − ṡ)

A�

]2

α2 +
[

1 + i
s(Bs − ṡ)

A�

]2

α∗2

−
[

1 +
(

s(Bs − ṡ)

A�

)2
]

(2|α|2 coth |α|2 + 1)

}
+ p2

p(t). (46)

The density operator in these states can be defined as

ρ̂ = P+|α+〉〈α+| + P−|α−〉〈α−|, (47)

where P+ and P− are the weights of the even and odd coherent states in the initial
state. The probabilities of finding n′ quanta in the coherent states are

Pn′ = 〈n′|ρ̂|n′〉. (48)

The substitution of Eq. (47) into the above equation gives

Pn′ = P+
cosh |α|2

|α|4n

(2n)!
δn′,2n + P−

sinh |α|2
|α|4n+2

(2n + 1)!
δn′,2n+1. (49)

The other SU(1,1) coherent state, so-called Perelomov coherent states, can
be defined as (Perelomov, 1972; Gerry, 1991)

|ξ ; k〉P = exp

[
1

2
(α2K̂+ − α∗2K̂−)

]
|0〉k

= (1 − |ξ |2)k
∞∑

n=0

(
(n + 2k − 1)!

n!(2k − 1)!

)1/2

ξn|n〉k, (50)

where

ξ = α2

|α|2 tanh(|α|2/2). (51)
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For k = 1/4 and k = 3/4, Eq. (50) becomes (Gerry, 1991)

|ξ ; 1/4〉P = (1 − |ξ |2)1/4
∞∑

n=0

√
(2n)!

2nn!
ξn|2n〉, (52)

|ξ ; 3/4〉P = (1 − |ξ |2)3/4
∞∑

n=0

√
(2n + 1)!

2nn!
ξn|2n + 1〉. (53)

We can express the density operator in this coherent state as

ρ̂ = P+|ξ ; 1/4〉P P〈ξ ; 1/4| + P−|ξ ; 3/4〉P P〈ξ ; 3/4|. (54)

Then, the probabilities of finding n′ quanta in this state can be evaluated

Pn′ = (1 − |ξ |2)1/2

22n(n!)2
|ξ |2n[P+(2n)!δn′,2n + P−(1 − |ξ |2)(2n + 1)!δn′,2n+1]. (55)

4. APPLICATION TO THE CALDIROLA–KANAI
HAMILTONIAN SYSTEM

In order to apply one mode TDQHS to the real system, let us consider driven
Caldirola–Kanai Hamiltonian system (Kanai, 1948). In this case, the functions in
Eq. (1) are given by

A = 1

M
e−γ t , C = Mω2

0e
γ t , D = Meγ tf (t), (56)

and all other functions are zero, where M , γ and ω0 are real positive constants.
We choose driving force f (t) as

f (t) = f0 cos(ωdt + φd ), (57)

where amplitude f0, frequency ωd and arbitrary phase φd are real constants. Then,
the Hamiltonian reduces to

Ĥ = p̂2

2M
e−γ t + 1

2
Meγ t

[
ω2

0x̂
2 − 2f (t)x̂

]
. (58)

In this case, the classical equation of motion Eq. (3) becomes

ẍ0(t) + γ ẋ0(t) + ω2
0x0(t) = f (t), (59)

and, Eq. (10) can be rewritten as

s̈(t) + γ ṡ(t) + ω2
0s(t) − �2

M2
e−2γ t 1

s3(t)
= 0. (60)
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We introduce a solution that satisfies Eq. (60) as (Pedrosa et al., 1997)

s(t) =
√

�

M
ω̃−1/2 exp

(
−γ

2
t
)

, (61)

where ω̃ is modified frequency that given by

ω̃ =
(

ω2
0 − γ 2

4

)1/2

. (62)

We can also derive complementary functions and particular solutions as

xc(t) = xc0e
−γ t/2 cos(ω̃t + φ), (63)

pc(t) = −Mxc0e
γ t/2

[γ

2
cos(ω̃t + φ) + ω̃ sin(ω̃t + φ)

]
, (64)

xp(t) = f0√
(ω2

0 − ω2
d )2 + γ 2ω2

d

cos(ωdt + φd − δ), (65)

pp(t) = − Mf0ωd√
(ω2

0 − ω2
d )2 + γ 2ω2

d

eγ t sin(ωdt + φd − δ), (66)

where xc0 is amplitude of oscillation at t = 0, φ is initial phase and

δ = tan−1 γωd

ω2
0 − ω2

d

. (67)

If we use Eqs. (63) and (64), Eq. (39) reduces to

α(t) = α0e
−i(ω̃t+φ), (68)

for the Caldirola–Kanai oscillator where α0 = √
Mω̃/(2 h̄)xc0. In terms of Eq. (61)

and Eqs.(63)–(66), the system can be described explicitly. Figures 1 and 2 are the
probability density in even and in odd coherent states for the Caldirola–Kanai
oscillator. The even and the odd coherent states are important since they can be
applied to describe the motion of a trapped ion (de Matos Filho and Vogel, 1996).
Matos and Vogel suggested a scheme for preparing even and odd coherent states of
a trapped ion based on laser excitation of two vibronic transitions (de Matos Filho
and Vogel, 1996). We also depicted the probability density in Perelomov coherent
states in Figs. 3 and 4. From all figures, we can confirm that the probability density
in the coherent states for the Caldirola–Kanai oscillator converges to the center as
time goes by, due to the damping constant γ .

5. SUMMARY

In this paper, SU(1,1) Lie algebric formulation that enabled us to investigate
the quantum properties of the TDQHS are described. We realized SU(1,1) Lie
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Fig. 1. Probability density in even coherent state (a) and in odd coherent
state (b), Eq. (40), for Caldirola–Kanai oscillator with no driving force
(f (t) = 0) as a function of position x̂ and time t . We used � = 1, ω0 = 1,
γ = 0.5, M = 1, h̄ = 1, xc0 = 23/2, and φ = 0.

algebra by defining generators K̂0, K̂1, and K̂2 for TDQHS. We also defined
raising operator K̂+ and lowering operator K̂− for the system. These raising and
lowering operators of SU(1,1) Lie algebra can be expressed by multiplying a
time-constant magnitude and a time-dependent phase factor [see Eqs. (16) and
(17)]. We confirmed that the generators K̂0 is constant with time. Exact wave
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Fig. 2. Same as in Fig. 1, but with a driving force Eq. (57). We used f0 = 5,
ωd = 4.5, and φd = 0.

functions for the system are derived using SU(1,1) Lie algebra. Two kind of
the generalized SU(1,1) coherent states, i.e., even and odd coherent states and
Perelomov coherent states are studied. Even and odd coherent states, Eq. (40), are
represented in terms of the classical solutions for coordinate and momentum, i.e.,
complementary solutions xc(t) and pc(t) plus particular solutions xp(t) and pp(t).
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Fig. 3. Probability density in Perelomov coherent state, Eqs. (52) and (53) for
Caldirola–Kanai oscillator with no driving force (f (t) = 0) as a function of posi-
tion x̂ and time t . Figure (a) is for k = 1/4, and figure (b) for k = 3/4. We used � = 1,
ω0 = 2, γ = 0.5, M = 1, h̄ = 1, xc0 = 23/2, and φ = 0.

Expectation values for coordinate and momentum and their square in even and
odd coherent states and in Perelomov coherent states are derived.

We applied our study to the Caldirola–Kanai oscillator. The eigenvalue, α(t),
of the lowering operator is given by Eq. (68) whose magnitudes are constant with
time. We confirmed that the probability density of the even and odd coherent states
and the Perelomov coherent states for the Caldirola–Kanai oscillator converges
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Fig. 4. Same as in Fig. 3, but with a driving force Eq. (57). We used f0 = 20, ωd = 4.5, and
φd = 0.

to the center as time goes by, due to the damping constant γ . All the figures of
probability density for the system with a driving force are somewhat deformed.
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